eo_logo
 
Product added to cart

Edmund Optics®

Knowledge Center

 Verified library of trusted technical resources created by our 240+ global engineers.

Filter
Knowledge Center Resources (222)

An Introduction to Optical Coatings

Optical coatings are used to influence the transmission, reflection, or polarization properties of an optical component.

View Now Add to saved content

Basics of Ultrafast Lasers

Master the fundamentals of ultrafast lasers and how to choose optics that can withstand their high powers and short pulse durations.

View Now Add to saved content

Laser Beam Shaping Overview

Learn how to navigate the many available options for shaping the irradiance profile and phase of laser beams to maximize your laser system's performance.

View Now Add to saved content

Understanding Optical Specifications

Do you want to know more about the importance of optical specifications? Learn the different types of specifications and their impact on your system at Edmund Optics.

View Now Add to saved content

Introduction to Polarization

Is polarization a new topic for you? Learn about key terminology, types, and more information to help you understand polarization at Edmund Optics.

View Now Add to saved content

Introduction to Optical Prisms

Learn about the different types of optical prisms, their applications, and how to select the right prism for your specific system.

View Now Add to saved content

Introduction to Modulation Transfer Function

Want to know more about the Modular Transfer Function? Learn about the components, understanding, importance, and characterization of MTF at Edmund Optics.

View Now Add to saved content

All About Aspheric Lenses

Learn all about the benefits of aspheres, their unique anatomy, how they're manufactured, and how to choose the right one for your system.

View Now Add to saved content

Lens Geometry Performance Comparison

This comparison of the performance of aspheric, achromatic, and spherical PCX lenses in different situations reveals the ideal use cases for each type of lens.

View Now Add to saved content

Understanding Surface Roughness

Surface roughness describes how a shape deviates from its ideal form. This is critical for controlling light scatter in laser devices and other optical systems.

View Now Add to saved content

Understanding Focal Length and Field of View

Learn how to understand focal length and field of view for imaging lenses through calculations, working distance, and examples at Edmund Optics.

View Now Add to saved content

Lens Performance Curves

Are you trying to measure the performance of your lens? Although this can be a difficult task, there are curves that can help. Read more at Edmund Optics.

View Now Add to saved content

Understanding Microscopes and Objectives

Learn about the different components used to build a microscope, key concepts, and specifications at Edmund Optics.

View Now Add to saved content

Confocal Microscopy

Confocal microscopy provides high resolution, elimination of out-of-focus glare due to spatial filtering, and reduction of light-induced damage to the sample.

View Now Add to saved content

Multiphoton Microscopy

Multiphoton microscopy is ideal for capturing high-resolution 3D images with reduced photobleaching and phototoxicity compared to confocal microscopy.

View Now Add to saved content

Understanding and Specifying LIDT of Laser Components

Laser induced damage threshold (LIDT) denotes the maximum laser fluence an optical component can withstand with an acceptable amount of risk.

View Now Add to saved content

Gaussian Beam Propagation

Many lasers are assumed to have a Gaussian profile, and understanding Gaussian beam propagation is crucial for predicting real-world performance of lasers.

View Now Add to saved content

Anti-Reflection (AR) Coatings

Anti-reflection (AR) coatings are applied to optical components to increase throughput and reduce hazards caused by back-reflections.

View Now Add to saved content

Aspheric Lens Irregularity and Strehl Ratio

The Strehl ratio of an optical system is a comparison of its real performance with its diffraction-limited performance.

View Now Add to saved content

Beam Expander Selection Guide

Not sure which beam expander will work best in your application? Check out EO's Beam Expander Selection Guide to easily compare each type at Edmund Optics.

View Now Add to saved content

Beam Expander Testing

Shack-Hartmann wavefront sensors are used to test the transmitted wavefront error of laser beam expanders, predicting the real-world performance of the beam expander.

View Now Add to saved content

Beam Quality and Strehl Ratio

There are several metrics used to describe the quality of a laser beam including the M2 factor, the beam parameter product, and power in the bucket

View Now Add to saved content

Building a Custom Optical Isolator with Stock Components

Edmund Optics' component list and steps provided are used to successfully build an Optical Isolator.

View Now Add to saved content

Challenges of Specifying LIDT for CW Lasers

The LIDT of continuous wave (CW) lasers is dependent on laser power, beam diameter, and other use parameters.

View Now Add to saved content

Understanding Spatial Filters

Do you have a question about spatial filters? Learn more about how spatial filters are used with lasers and improve a beam at Edmund Optics.

View Now Add to saved content

Characteristics of 2µm Lasers

Laser Optics for 2μm lasers require very specific types of materials such as fused silica and germanium. Learn more at Edmund Optics.

View Now Add to saved content

Coherent® Laser Selection Guide

Compare Coherent Laser specifications with the Edmund Optics selection guide.

View Now Add to saved content

Common Laser Optics Materials

Understanding the most commonly used laser optics materials will allow for easy navigation of EO’s wide selection of laser optics components.

View Now Add to saved content

Common Laser Types

Understanding the most common laser sources, modes of operation, and gain media provides the context for selecting the proper laser for your specific application.

View Now Add to saved content

Considerations When Using Cylinder Lenses

Learn about specifications that should be considered when using cylinder lenses, including power axis wedge, plano axis wedge, and axial twist at Edmund Optics.

View Now Add to saved content