LASER OPTICS

Your Partner for

Custom Laser Optics Manufacturing

Edmund Optics[®] designs and manufactures coatings, components, and assemblies optimized for high-power laser systems.

800.363.1992 www.edmundoptics.com/**LO**

Custom LASER OPTICS Manufacturing

Edmund Optics[®] designs and manufactures laser optics coatings, components, and assemblies optimized for high-power laser systems.

Laser Coatings

Edmund Optics[®] designs and deposits coatings with a high laser damage threshold (LDT) through advanced process control and monitoring of manufacturing parameters, including cleanliness and coating repeatability.

Substrate Manufacturing

Our engineers design and fabricate laser optics substrates including flats for mirrors and windows, aspheric lenses, prisms, gain elements, and more in both prototype and volume production quantities.

Assemblies

Edmund Optics® also manufactures both glass-to-glass assemblies like cube beamsplitters and metal-inglass assemblies like beam expanders, objectives, and f-theta lenses.

Edmund Optics[®] is here to guide you through your custom manufacturing needs.

From build-to-print manufacturing, to full custom design and manufacturing, to off-the shelf products for quick prototyping, Edmund Optics[®] has been offering a wide range of solutions for **30+ years**.

Employees

Lead Times for Standard Coatings

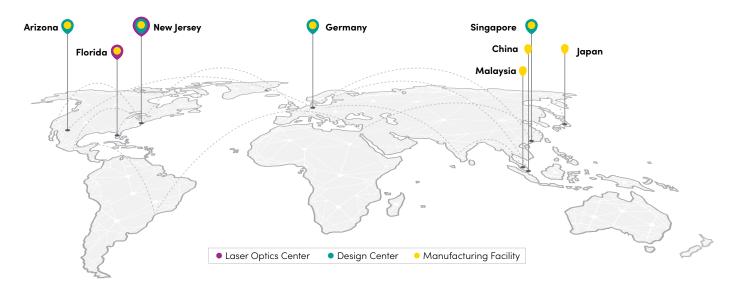
Dr. Stefaan Vandendriessche Senior Director. Laser Optics Business Line

66 We continuously put our customers first, doing this every day by **reliably manufac**turing laser optics that meet our customer's specifications and needs. Whether you need a single highly-reflective mirror coated to prototype a new laser system, or you are scaling a fully-custom laser assembly into volume production, our team of dedicated manufacturing and applications experts are there to support your development, manufacturing, and assembly needs. 99

Who We Are

8 Factories

US (Florida, Arizona, New Jersey), Germany, Japan, China, Malaysia,


US (Arizona, New Jersey), China & Germany

Where We Are

Arizona, USA Design & **Manufacturing Center**

21,225 sq. ft (1,972 m²) facility for advanced, high-volume laser assembly, laser optics design, and laser assembly metrology

Core Capabilities

• High-end laser optics assemblies such as beam expanders and objectives

Florida, USA Laser Optics Manufacturing

34,000 sq. ft (3,159 m²) dedicated to manufacturing high laser damage coatings, laser crystals, and other high-precision laser optics

Core Capabilities Complex, multi-band

optics

Laser crystals

Core Capabilities highly-reflective and Laser optics metrology anti-reflective coatings R&D for laser optics products • High laser damage threshold

Singapore

77,000 sq. ft (7,150 m²) of manufacturing space. Highly vertically-integrated facility for volume production of components such as laser-grade aspheric lenses

Core Capabilities

• Laser-grade aspheres Laser-grade prisms Optically-contacted beamsplitter cubes

80,000 sq. ft (7,430 m²) of manufacturing space. High-precision spherical lenses, prisms, and other coated optics with over 50 years of experience

Core Capabilities

 Spherical lenses • Plano-plano laser-grade

Biomedical

ISO 13485 certified with decades of experience supplying medical optics from intra-cavity, to beam steering, to laser crystal and rod processing and refurbishing, to sub-assemblies such as articulating arms

Edmund Optics®: ISO 13485 certified with decades of experience **In-House Expertise:** supplying medical optics Maura Francis from intra-cavity, to beam

Value Proposition of

Solutions Engineer II steering, to focus objectives, Laser Optics to sub-assemblies such as articulating arms

Materials Processing

Mirrors, beam expanders, and other optics with high laser damage thresholds, transparency into testing and specification development, and expertise in ultrafast applications and UV degradation

In-House Expertise: BuKyoung Lim Sales Engineer for Asia development

And Much More!

Meet our other Experts

Kenneth Barber Senior Director of Engineering

4

800.363.1992 Edmund Optics®

Dr. Nathan Carlie Support Engineer Director of Research and Development

sq. ft (1,860 m²) of dedicated man-

ufacturing space. High-precision

testing cells

fabrication, coating, assembly, and

Castillo Laser Optic Sales Specialist

Dabney Principal Engineer, Lasers

Karl George, Jr. Senior Thin Film Engineer, Process Development

Hinton Marketplace Business Development Manager

McCray

Coating

Supervisor

Dr. Bill

Murray

Ultrafast Laser

Optics Product

Line Manager

Jay Small Principal **Optical Design** Engineer

Application Expertise

Value Proposition of Edmund Optics®:

Mirrors, beam expanders, and other optics with high laser damage thresholds and transparency into testing and specification

Security

US ITAR compliant manufacturing, Technical Assistance Agreements (TAA) in place for cost-effective manufacturing in Singapore and Japan when applicable, and a onestop shop for all of your optics

In-House Expertise: James Karchner Laser Optics Sales Manger

Value Proposition of Edmund Optics®: US ITAR compliant man-

ufacturing and Technical Assistance Agreements (TAA) in place for offshore manufacturing in Singapore and Japan when applicable

Turner Technical Fellow, Optical Design

Dragan Velkov Principal Applications Engineer

Wheeler Ultrafast Laser **Optics Engineer**

5

www.edmundoptics.com/LO

Laser Optics Components

- Build-to-print and fully-custom design
- Manufacturing from prototyping to volume production
- Complex coatings: high laser damage threshold, multi-band anti-reflective, highly-reflective, partially reflective, or ultrafast
- Anti-reflective coatings for wavelengths from 248nm – 12µm and highly-reflective wavelengths from 248nm - 40µm
- State-of-the-art metrology utilized to consistently meet specifications

Lenses

Volume Manufacturing

- Full custom design of coatings and components
- Highly-flexible volume order servicing
- Competitive volume pricing
- Dedicated engineering support personalized for your needs

For coating capabilities, see pages 8-9

Flat Optics

Mirrors, windows, filters, and thin film polarizers in a wide variety of substrate materials

Flat Optic Capabilities		
Diameter:	5 - 200mm	
Dimensional Tolerance:	+0/-0.010mm	
Thickness:	±0.010mm	
Clear Aperture:	>90%	
Surface Flatness (P - V):	$\lambda/10$ to $\lambda/20$	
Bevel (Face Width @ 45 Degrees):	<0.25mm	
Surface Quality:	10-5	
Parallelism:	<10 arcsec	
Materials:	UV Grade Fused Silica (Corning HPFS® 7980), KrF Grade Fused Silica (Corning HPFS® 7980), IR Grade Fused Silica (Corning HPFS® 7979), Sapphire, N-BK7, N-SF5, N-SF11, CaF ₂ , and More	
Surface Roughness:	10 - 15Å typical, <1Å for superpolished surfaces	

Aspheric, spherical singlet, and achromatic lenses designed for specific laser wavelengths

Lenses Capabilities				
Diameter:	5 - 200mm			
Diameter Tolerance:	+0/-0.010mm			
Asphere Figure Error (P - V) @ 633nm:	1λ			
Vertex Radius (Asphere):	±0.1%			
Peak Slope Error:	0.35µm/mm per 1mm window			
Centering (Beam Deviation):	1 arcmin			
Center Thickness Tolerance:	±0.050mm			
Surface Quality (Scratch Dig):	10-5			
Aspheric Surface Metrology:	Profilometry (3D)			
Surface Roughness (RMS):	2nm			
Thickness:	±0.010mm			
Power (P - V):	λ/2			
Irregularity (P - V):	λ/40			

Laser Crystals, Glasses, & Rods

Crystal cutting, grinding, polishing, coating for high LDT and throughput, and refurbishing

Laser Crystal Capabilities		
Dimensional Tolerance:	±0.1mm	
Form Factors:	Rod, rectangular, and zigzag	
Clear Aperture:	90% of Diameter	
Surface Quality:	10-5	
Parallelism of Polished Surfaces:	<10 arcsec	
Parallelism of Tilted Ends:	<3 arcmin	
Perpendicularity:	<5 arcmin	
Surface Figure:	$\lambda/10$ at 632.8nm Over the Clear Aperture	
Protective Chamfer:	Not to Encroach on the Clear Aperture	
Materials:	Can Fabricate, Coat, and Refurbish: Nd:YAG, Er:YAG, CTH:YAG, Nd:YLF, Tm:YLF, Ba:YLF, Cr:LiSAF, KTP, RTP, RTA, Alexandrite, ZGP, Cr:ZnSe, Fe:ZnSe, Nd:YV04, TGG, LiNbO3, PPLN, and MgO:PPLN	
	Can Fabricate and Coat: Cr:YAG, Yb:KGW, LBO, and BBO	

Prisms

Wide variety of prism shapes and substrates with optical contacting available for high-power beam steering applications

Prism Capabilities		
Dimensions:	2 - 75mm	
Dimensional Tolerance:	+0/-0.01mm	
V-Height:	>±0.03mm	
Irregularity:	λ/20	
Prism Physical Angle Tolerance:	±0.5 arcsec	
Max Bevel (Face Width @ 45 Degress):	±0.05mm	
Surface Quality (Scratch Dig):	10-5	
Bonded Prism Assembly Beam Deviation:	0.5 arcmin	
Beamsplitter Cube Bonding Techniques:	Glued, air-spaced, or optically-contacted	

Laser Optics Coatings

Lead times are as fast as 2 weeks for standard coatings.

Optical Coating Capabilities		
Specification	Value	
Dimensions :	2 - 457.2mm	
Clear Aperture:	Up to 100% (Dependent on Substrate Dimensions / Geometry / Tolerances)	
Reflectivity:	0.05 - 99.99% (ppm-level losses on request)	
Anti-Reflective Wavelength Range:	248nm - 12µm	
Highly-Reflective Wavelength Range:	248nm - 40μm	
Laser Damage Threshold (LDT) for ns pulses:	>40 J/cm² @ 1064nm, 20ns, 20Hz Pulses	
Laser Damage Threshold (LDT) for ultrafast fs pulses:	>0.3J/cm ² @ 800nm, 48fs, 100Hz Pulses	
	>0.7 J/cm² (0 800nm, 200fs, 100Hz	
	>0.4 J/cm²	
	>0.9 J/cm² @ 1030nm, 500fs, 100Hz	
Group Delay Dispersion (GDD) Range:	-4000 - 5000 fs ²	
Durability:	MIL-PRF-13830B APP C, PARA C.3.8.4, PARA C.3.8.5, MIL-C-48497A	
Shortpass Filter Cut-Off Wavelength:	400 - 1600nm	
Longpass Filter Cut-On Wavelength:	240 - 7300nm	
Bandpass Filter CWL, OD, and Bandwidth:	193 - 10,600nm, >OD 7 in Blocking Range, 1nm - Broadband	
Notch Filter CWL:	355 - 1550nm	
Reflective ND Filter OD:	OD 0.1 - OD 3	
Filter Center Wavelength (CWL) Tolerance:	±1nm	
Filter Edge Tolerance:	<1% Deviation, <0.2% Special Cases	
Beamsplitter (BS) Wavelength Range:	240 - 20,000nm	
BS Polarization Extinction Ratio (S:P):	10,000:1	

Edmund Optics® engineers have the expertise to guide you through selecting the best coating technology for your application.

Electron-Beam (E-Beam) Coatings

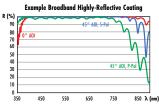
• Low-stress, cost-effective coatings ideal for many laser optics

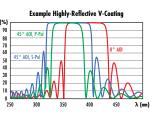
Ion-Assisted Deposition (IAD) E-Beam Coatings

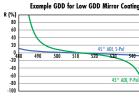
• Versatile coating technology achieving higher density and more environmentally stable coatings

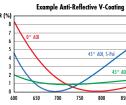
Ion Beam Sputtered (IBS) Coatings

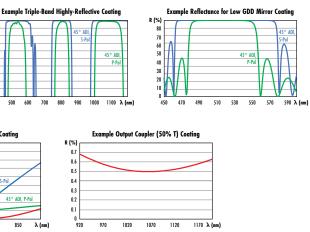
• Highly-repeatable, highly-environmentally-stable technology ideal for high reflectivities, ultrafast optics, and filters with sharp transitions


Magnetron Sputtering


• Low chamber pressure reduces setup time and allows for more economical coating of high-volume optics


Sample Coating Curves


These coating curves are not an exhaustive summary of capabilities, but they show some examples of the coatings designed by Edmund Optics[®].

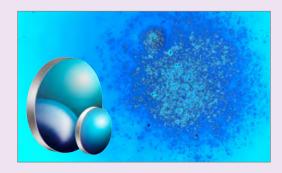


9

Ion Beam Sputtering

- Reflectivities >99.99% (ppm-level losses on request)
- Coatings that are more environmentally stable in varying temperature and humidity conditions
- Coatings covering wavelengths between 355 1600nm
- Group delay dispersion (GDD) control for ultrafast coatings

Superpolishing


- Minimize scatter losses with ultra-low surface roughness
- Fused silica with RMS surface roughness <1Å
- Standard sizes and shapes from 12.7 to 50.8mm
- Custom sizes and shapes upon request
- Supported by a suite of in-house metrology
- Parts-per-million level scattering

Key **Technologies**

Ultraviolet (UV) Degradation

- In-house laser lab performing long-run applied UV laser exposure experiments at 355nm with a 10ns pulse duration
- Laser-induced contamination is a key concern for UV laser systems
- Contamination resulting from the environment or outgassing can significantly reduce performance or lead to system failure
- Intimate knowledge of cleaning and assembly techniques to mitigate these effects

Laser Crystal & **Glass Processing**

- Laser crystal and doped glass grinding, polishing, and coating in sizes from 2 – 457.2nm
- Over 30 years' experience with coating adhesion and durability for laser optics
- Also refurbish both flat and curved laser rods, preventing you from waiting to source whole new rods
- Our metrology lets us guarantee centration and radius of curvature

- Ultrafast pulses have inherently broad bandwidths, making controlling chromatic dispersion critical
- Group delay dispersion (GDD) of ultrafast optics must be finely controlled
- Edmund Optics[®] designs and deposits ultrafast coatings with GDD values from -4,000 - 5,000 fs²
- Dielectric highly-reflective and anti-reflective coatings as well as ultrafast-enhanced silver coatings

Design and Manufacturing Capabilities

- Highly-dispersive mirrors, low GDD optics, and beam expanders • Intra- and extra-cavity optics for high-power ultrafast lasers • 3rd order dispersion of 0 fs³, or negative values down to -2500 fs³ • Cost-effective ultrafast-enhanced silver coatings with R>99% and GDD as low as 0

- ±20 fs² over common ultrafast wavelengths

- Accurately measure GDD of multilayer ultrafast optics • Ultra-broadband spectral coverage ranging from 250nm to 2100nm • GDD accuracy of ±5 fs² at angles of incidence between 0 - 70°

- applications experience
- are needed
 - Partnership with UltraFast Innovations for developing cutting-edge ultrafast coatings

- Our PeakPower High LDT Low GDD Ultrafast Mirrors won the Platinum-Level 2024 Laser Focus World Innovators Award
- They have the highest available laser damage threshold (LDT) for thin film coatings designed for 920nm ultrafast lasers LDT values exceeding 0.75J/cm² for 25fs pulse durations at 920nm

Ultrafast Metrology

Technical Expertise

- In-house experts with years of ultrafast optics manufacturing and ultrafast laser
- Guidance in understanding what GDD, 3rd order dispersion, and other specifications

Award-Winning LDT

Laser Optics Assemblies

- Design and manufacturing capabilities for custom beam expanders, focusing objectives, f-theta lenses, and other laser optics subassemblies
- Active alignment and centration for advanced assemblies
- High-power assemblies designed without internally-focusing ghost reflections
- Full assembly development from modeling physical optics propagation, to designing lens elements, to coating, to assembly, to testing

- In-house testing to measure assembly performance
- Transmitted wavefront error, laser beam profiling, and beam caustics
- Development of application-specific tests

Beam Expander Capabilities	
Expansion Power:	>1X - 20X
Design Wavelengths:	Common Laser Lines Including Nd:YAG, Yb:YAG, Ti:sapphire, and Tm/Ho-Doped Fiber Lasers, Broadband
Mounts:	C-Mount, M22, M30, Custom
Beam Adjustment Mechanisms Available:	Sliding Optics, Rotating Optics, Fixed
Testing/Design Specifications:	Transmitted Wavefront Error, Power in the Bucket / Energy on Target, Focused Spot Size
Assembly Size:	>20mm - >1m
Ruggedization Available:	Athermalization, Shock and Vibration, Sealing from Contaminants

Advanced Laser Assemblies

- Actively compensate for the decenter and tilt of optical components during assembly
- Critical for precision objectives, beam expanders, f-theta lenses, and other assemblies
- 4 ISO Class 6 clean rooms for assembly and a Class 7 cleanroom for incoming inspection

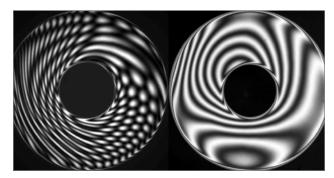
Beam Expander Parameters We Can Measure			
Transmitted Wavefront Error (TWE):	How much light deviat		
M² Factor:	For an ideal Gaussian inpu		
Power in the Bucket (PIB):	How much laser power is integrated o		
Beam Parameter Product (BPP):	Quantifies how		
Focused Spot Size:	The size of the beam focused to a s		
Beam Deviation:	Also called beam we		
Transmitted Power:	How much input lase		
Input / Exiting Beam Waist Diameter:	The		

Equipment

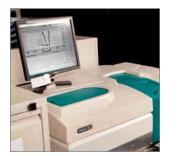
- Gentec-EO Beamage-M2 Beam Profiler
- DataRay Beam'R2 Beam Profiler
- Phasics SID4-UHR Wavefront Sensor
- Ophir 3A-P-Quad Laser Position Sensor
- Ophir PD300R-UV Photodiode Sensor
- Juno USB Virtual Laser Power & Energy Meter
- Cobolt Rumba 1064nm Fiber-Coupled Laser
- Cobolt 08-DPL 532nm Fiber-Coupled Laser
- And more!

Metrology for Laser Optics Assemblies

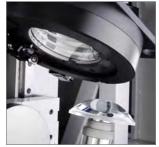
ates from its ideal shape after passing through the assembly out beam, compare the assembly output to that ideal input beam over a specified "bucket", most often a spot of a specific radius at the target or well the output beam can be focused down to a spot spot after the assembly based on a certain laser's operating parameters wander, this characterizes how off-axis the output beam is ser power makes it through the assembly without being lost e smallest diameter along the beam path



Metrology


Laser Optics Assembly Metrology

- In-house testing to measure assembly performance
- Transmitted wavefront error
- Laser beam profiling
- Measuring power in bucket and energy on target
- Development of application-specific tests


Short Coherence Length Interferometry

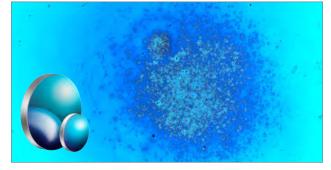
- Special LED source used to measure parallel, flat surfaces while minimizing reflections off back surfaces
- Eliminates the need for special treatment of the rear surface, which minimizes measurement time, the risk of damage to the part, and the risk of inaccurate measurements
- Ideal for measuring dual-side-coated optics such as IBS coated mirrors with stress-compensating coatings on the backside

Spectrophotometry

- Used to characterize reflective and transmissive spectral performance
- Large spectral measurement range of 120nm – 20µm
- Measures greater than OD 7 blocking for an accurate representation of transmission and rejection bands

Interferometry

- Transmitted and reflected wavefront measurements down to $<\lambda/20$
- Stitching, large and small aperture, and computergenerated hologram setups
- Used to qualify surface irregularity of flats, spherical and aspherical components, and optical assemblies

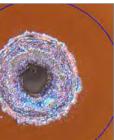

Ultrafast Dispersion Characterization

- Accurately measure group delay dispersion (GDD) of multilayer ultrafast optics • Ultra-broadband spectral
 - coverage ranging from 250nm to 2100nm
- GDD accuracy of ±5 fs² at AOI between 0 - 70°
- locations to 3nm
- Vertical resolution down to 0.1nm

Photothermal Common-Path Interferometry

- Accurately measure absorption for better characterization of the spectral properties of optical coatings and substrates
- A pump-probe geometry measures change in refractive index due to absorption-induced thermal expansion
- More sensitive and accurate absorption measurement for very low levels of absorption than spectrophotometers, which determine absorption indirectly by directly measuring transmission

Ultraviolet (UV) Degradation

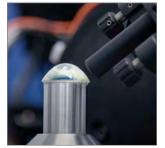

- In-house laser lab performing long-run applied UV laser exposure experiments
- Laser-induced contamination is a key concern for UV laser systems
- Contamination resulting from the environment or outgassing can significantly reduce performance or lead to system failure
- Intimate knowledge of cleaning and assembly techniques to mitigate these effects

Differential Interference Contrast (DIC) Microscopy

- High-sensitivity defect detection in transmissive materials
- Used for analyzing laser damage in optical coatings and substrates
- Surfaces analyzed under 100X magnification

Laser Damage Threshold (LDT) Testing*

• Components tested both in-house and outsourced for guaranteed LDT • Internal high-power nanosecond Nd:YAG laser at 1064nm and harmonics (532nm and 355nm) • Other wavelengths and pulse durations available


Cavity Ring-Down Spectroscopy

- High-accuracy loss measurement with sensitivity in the parts per million
- Tuned for common Nd:YAG harmonics - other wavelengths available upon request
- Accurately quantifies both high and low reflectivity laser optics

Atomic Force Microscopy (AFM)

- High-accuracy characterizations of surface rough
 - ness and feature sizes and
- Lateral resolution down

Non-Contact 3D Profilometry

- Verify surface profile of precision aspheric lenses
- OptiPro UltraSurf 4X 100 Non-Contact
- Measure surfaces without scratching or damaging the parts

*Test data available upon request

15

101 E. Gloucester Pike | P.O. Box 9000 | Barrington, NJ 08007 USA

The Future Depends on Optics®

240+ Global Engineers with expertise in a wide variety of applications

Custom laser optics manufacturing projects from Edmund Optics[®] are supported by a dedicated sales team, design group, and project management team. They can support your project from concept, to design, to quoting, order placement, and order fulfillment. You will consistently have the same points of contact who are knowledgeable in your specific application.

^{800.363.1992 |} www.edmundoptics.com/LO