Edmund Optics uses cookies to optimize and enhance the features and content on our website. Click “OK” for the full user experience, you can view additional information on the cookies we use by clicking the “Details” button. We do NOT sell your information from marketing cookies, we use it to improve ONLY YOUR experience with Edmund Optics.
Necessary cookies help make a website usable by enabling basic functions like page navigation and access to secure areas of the website. The website cannot function properly without these cookies.
Some of the data collected by this provider is for the purposes of personalization and measuring advertising effectiveness.
rc::aThis cookie is used to distinguish between humans and bots. This is beneficial for the website, in order to make valid reports on the use of their website.
Maximum Storage Duration: PersistentType: HTML Local Storage
rc::cThis cookie is used to distinguish between humans and bots.
Maximum Storage Duration: SessionType: HTML Local Storage
__cf_bm [x2]This cookie is used to distinguish between humans and bots. This is beneficial for the website, in order to make valid reports on the use of their website.
AWSALB [x2]Registers which server-cluster is serving the visitor. This is used in context with load balancing, in order to optimize user experience.
Maximum Storage Duration: 7 daysType: HTTP Cookie
AWSALBCORS [x2]Registers which server-cluster is serving the visitor. This is used in context with load balancing, in order to optimize user experience.
Maximum Storage Duration: SessionType: HTTP Cookie
.AspNetCore.Mvc.CookieTempDataProviderPreserves the visitor's session state across page requests.
Maximum Storage Duration: SessionType: HTTP Cookie
UMB_SESSIONStores domain prefix to determine whether it holds https or http URL properties.
Maximum Storage Duration: SessionType: HTTP Cookie
Preference cookies enable a website to remember information that changes the way the website behaves or looks, like your preferred language or the region that you are in.
@@lc_auth_token:3b0f44ba-5eb5-4bb1-a9e1-2214776a186bIdentifies the visitor across devices and visits, in order to optimize the chat-box function on the website.
Maximum Storage Duration: PersistentType: HTML Local Storage
@@lc_idsIdentifies the visitor across devices and visits, in order to optimize the chat-box function on the website.
Maximum Storage Duration: PersistentType: HTML Local Storage
Statistic cookies help website owners to understand how visitors interact with websites by collecting and reporting information anonymously.
_conv_rThis cookie is used as a referral-cookie that stores the visitor’s profile – the cookie is overwritten when the visitor re-enters the website and new information on the visitor is collected and stored.
Maximum Storage Duration: SessionType: HTTP Cookie
_conv_sThis cookie contains an ID string on the current session. This contains non-personal information on what subpages the visitor enters – this information is used to optimize the visitor's experience.
Maximum Storage Duration: 1 dayType: HTTP Cookie
_conv_vThis cookie is used to identify the frequency of visits and how long the visitor is on the website. The cookie is also used to determine how many and which subpages the visitor visits on a website – this information can be used by the website to optimize the domain and its subpages.
Maximum Storage Duration: 6 monthsType: HTTP Cookie
Some of the data collected by this provider is for the purposes of personalization and measuring advertising effectiveness.
_gaRegisters a unique ID that is used to generate statistical data on how the visitor uses the website.
Maximum Storage Duration: 25 monthsType: HTTP Cookie
_ga_#Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
Maximum Storage Duration: 25 monthsType: HTTP Cookie
_livechat_has_visitedIdentifies the visitor across devices and visits, in order to optimize the chat-box function on the website.
Maximum Storage Duration: PersistentType: HTML Local Storage
Marketing cookies are used to track visitors across websites. The intention is to display ads that are relevant and engaging for the individual user and thereby more valuable for publishers and third party advertisers.
conv_randThis cookie is used by the website’s operator in context with multi-variate testing. This is a tool used to combine or change content on the website. This allows the website to find the best variation/edition of the site.
Maximum Storage Duration: PersistentType: HTML Local Storage
_conv_sptestThis cookie is used by the website’s operator in context with multi-variate testing. This is a tool used to combine or change content on the website. This allows the website to find the best variation/edition of the site.
Maximum Storage Duration: SessionType: HTTP Cookie
Some of the data collected by this provider is for the purposes of personalization and measuring advertising effectiveness.
IDEUsed by Google DoubleClick to register and report the website user's actions after viewing or clicking one of the advertiser's ads with the purpose of measuring the efficacy of an ad and to present targeted ads to the user.
Maximum Storage Duration: 400 daysType: HTTP Cookie
pagead/landing [x2]Collects data on visitor behaviour from multiple websites, in order to present more relevant advertisement - This also allows the website to limit the number of times that they are shown the same advertisement.
Maximum Storage Duration: SessionType: Pixel Tracker
test_cookieUsed to check if the user's browser supports cookies.
Maximum Storage Duration: 1 dayType: HTTP Cookie
_gcl_auUsed by Google AdSense for experimenting with advertisement efficiency across websites using their services.
Maximum Storage Duration: 3 monthsType: HTTP Cookie
NIDRegisters a unique ID that identifies a returning user's device. The ID is used for targeted ads.
Maximum Storage Duration: 6 monthsType: HTTP Cookie
pagead/1p-user-list/#Tracks if the user has shown interest in specific products or events across multiple websites and detects how the user navigates between sites. This is used for measurement of advertisement efforts and facilitates payment of referral-fees between websites.
Maximum Storage Duration: SessionType: Pixel Tracker
_mkto_trkContains data on visitor behaviour and website interaction. This is used in context with the email marketing service Marketo.com, which allows the website to target visitors via email.
Maximum Storage Duration: 2 yearsType: HTTP Cookie
__tld__Used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor's preferences.
Maximum Storage Duration: SessionType: HTTP Cookie
wisepops [x2]Used in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
Maximum Storage Duration: SessionType: HTTP Cookie
wisepops_props [x2]Used in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
Maximum Storage Duration: SessionType: HTTP Cookie
wisepops_session [x2]Used in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
Maximum Storage Duration: SessionType: HTTP Cookie
wisepops_visitor [x2]Used in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
Maximum Storage Duration: SessionType: HTTP Cookie
wisepops_visits [x2]Used in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
Maximum Storage Duration: SessionType: HTTP Cookie
wisepops_session_idUsed in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
Maximum Storage Duration: SessionType: HTML Local Storage
wisepops_session_landing_urlUsed in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
Maximum Storage Duration: SessionType: HTML Local Storage
wisepops_session_referrerUsed in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
Maximum Storage Duration: SessionType: HTML Local Storage
wisepops-pageview_idUsed in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
Maximum Storage Duration: SessionType: HTML Local Storage
wisepops-uses-attentionUsed in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
Maximum Storage Duration: SessionType: HTML Local Storage
List of domains your consent applies to: [#BULK_CONSENT_DOMAINS#]
Cookie declaration last updated on 9/22/24 by Cookiebot
[#IABV2_TITLE#]
[#IABV2_BODY_INTRO#]
[#IABV2_BODY_LEGITIMATE_INTEREST_INTRO#]
[#IABV2_BODY_PREFERENCE_INTRO#]
[#IABV2_BODY_PURPOSES_INTRO#]
[#IABV2_BODY_PURPOSES#]
[#IABV2_BODY_FEATURES_INTRO#]
[#IABV2_BODY_FEATURES#]
[#IABV2_BODY_PARTNERS_INTRO#]
[#IABV2_BODY_PARTNERS#]
Cookies are small text files that can be used by websites to make a user's experience more efficient.
The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies we need your permission.
This site uses different types of cookies. Some cookies are placed by third party services that appear on our pages.
You can at any time change or withdraw your consent from the Cookie Declaration on our website.
Learn more about who we are, how you can contact us and how we process personal data in our Privacy Policy.
Please state your consent ID and date when you contact us regarding your consent.
Most web browsers allow you to view your cookies in the browser preferences, typically within the "Privacy" or "Security" tab. Some browsers allow you to delete specific cookies or even prevent cookies from being created. While disallowing cookies in your browser may provide a higher level of privacy, it is not recommended since many websites require cookies to function properly. Alternatively, you can visit www.aboutcookies.org which provides directions on how to block or delete cookies on all major browsers.
Congratulations to Our 2014 Educational Award Recipients!
Norman Edmund Inspiration Award — $5,000 in Products University of Waterloo, Canada — Submitted by Shahid Haider
For research that inspires others on a daily basis, especially children, to pursue careers in science and technology by developing new devices to advance medical sciences and cure any illnesses that they may face in their lifetimes. Rather than using a finger prick to test and monitor glucose levels for type 1 diabetes, Haider’s medical device eases diabetes monitoring in children by using a non-contact handheld system that takes full field images of the eye’s aqueous humor to infer glucose concentrations. The extraordinary part of this project is the development of a simultaneous method for polarization state image capture, which is coupled with a high resolution detector. This will allow the images to be captured on a single detector in order to allow for a very compact design to fit the hands of a child. By eliminating any pain associated with diabetes testing, the research has the direct potential to improve the quality of life for those afflicted with diabetes, including reducing the risk of eye, kidney, and heart damage.
For developing a small and portable device for screening neurodevelopmental disorders in young children based on dynamic pupillary light reflex (PLR) and thus eliminating the use of physical restraints in conducting such a test. PLR is tested by analyzing the dynamic changes in pupil size in response to a short flash of light. This simple, fast and completely noninvasive test, reveals extremely rich neurological information about the brain. The American Academy of Pediatrics estimates that at least 12% children are born with a neurodevelopmental disability. The current project, with the assistance from a team at the Thompson Center for Autism and Neurodevelopmental Disorders, focuses on the urgent clinical need of an accurate and objective method for early screening of autism in very young children so that early therapy can be given to significantly improve patient outcomes. The ultimate goal of this devise is to make this technology more readily available for clinicians and researchers to fully explore its potential and benefit even more people.
For research into the advancement of micro-chips for detection of light scattering, which can contribute to the development of compact, portable flow cytometry systems designed for wide scale deployment in developing areas. Professor Motosuke’s micro-chip is manufactured by a micromachining process that requires less manufacturing. Flow cytometry systems currently available on the market, typically are larger in size and have high costs - this limits their use especially in less developed and developing countries. This project is to develop a small, disposable chip to be used in a portable, low-cost flow cytometry system, in the future. The ultimate goal of this research project is for doctors, in the developing countries or impoverished regions, to be able to utilize portable cytometry systems for patient visits. The micro-chips ultimately provide easier use for those who are minimally trained while providing high repeatability thus allowing for this important device to be used by more doctors and clinicians as part of routine medical care.
For stopping and storing light pulses, including information encoded on the laser beam, for up to one minute in an optical crystal. In this project, Halfmann and his team brings light pulses to a complete stop, also called freezing, and stores the pulses in an optical memory to retrieve them afterwards. The team is developing novel optical memories for future high-performance information technologies based on quantum mechanics. Quantum computers operate at huge processing speed and capacity thus exceeding the limits of electronic computing. Optical quantum computers will need the ability to “catch” a light pulse, store it for memory, and release it at will afterwards. This is possible through quantum optics and the goal of the project is to provide a robust, “all-solid-state” solution, such as memories and light sources based on robust optical crystals, to enable integration in computer architectures and operation under realistic conditions. The development of optical solid-state quantum memories with large efficiencies and long storage times will pave the way towards novel information technologies.
For tracking the propagation of nerve impulses in brain tissue by imaging the changes in optical birefringence of the brain tissue to study and treat neuropathies such as epilepsy and stroke. By imaging the changes in polarization of transmitted or back reflected light, the team expects to make a moving picture of the neuronal activation pattern. The development of a minimally invasive, high-resolution optical imaging technology to image neuronal activation patterns would constitute an advancement for research into neuronal network mapping and would provide a valuable new tool for neuroscience research. This new method of optical imaging does not require the administration of voltage-sensitive dyes, which have cytotoxic side-effects, or other perturbative indicators, so neuronal activation patters can be observed in the native state of the neural tissues. Additionally the spatial resolution can be at the level of a single neuron and the temporal resolution of the imaging can be fast enough to capture the propagation patters of nerve impulses. The team is currently conducting experiments to image the effects of induced epileptic seizures and the brain’s response to therapy in order to provide invaluable information in the quest for new treatments for this class of diseases.
For research into building a system to trap ultrafine particles, optically (~several nm) and cooling the trapped particles down to ground state of light trapping, by applying a cavity cooling method into the system. This system can implement the quantum phenomena at a mesoscopic level through a highly precise operation. Such a system creates a condensed light that will be useful for use in a spectrometer with a non-classical motion state of captured particles. Recently, So and the research team have built an efficient optical-trap for ultrafine particles and for the first time implemented a new method that allows the reading of the phase change of scattered rays, with an intensity change of interference signal of the scattered rays and detected rays that occur from the optically trapped particles. This detection method will provide a better position resolution, along the optical axis, compared to the back focal interferometry method, which detects a motion of optically trapped particles using the conventional quadrant photodiode and can also have a wider bandwidth with a use of avalanche photodiode as a photodetector.
For developing laser radar for monitoring the atmospheric fauna with a particular interest in in-situ investigation of the billions of insect species. The investigation includes researching the pollinator biodiversity in agriculture, flux measurements of forestry pests and disease transmitting parasites for humans and livestock. The research project is currently counting 10,000 individuals per hour, per cubic meter, at distances up to 10 kilometers. Information gathered includes frequency, body, and wing size, but aims to determine species, genders and age groups. Additionally the team is developing optics for determining the wing membrane thickness with nanometer precision, called remote microscopy. These measures and data, especially the details, will be used to identify the influence of pollution and special fertilizers on different species and help to detect the potential of diseases transmitted by insects an even earlier stage. The long-term objective is the development of a portable tool to make these data accessible wherever needed.
For developing lightweight, mid-infrared, sensors to measure trace concentrations of methane using the cavity ring-down spectroscopy technique. These sensors can operate without flow cells and will be deployed on unmanned aerial vehicles (UAVs) allowing for improved and more cost effective methane sensing to better detect and mitigate leakage. Recent years have seen a dramatic increase of natural gas usage allowing for lower domestic energy costs, less dependence on foreign oil, and a reduction of carbon dioxide emissions. However, there is growing concern over methane leakage from the extraction and distribution infrastructure, since one leaked methane molecule provides greater than 20x the radiative forcing of one carbon dioxide molecule. Yalin and his team are addressing this challenge by modifying the sensor operation and spectroscopy to measure open ambient air-paths without widely used flow-cells and vacuum systems without sacrificing accuracy or precision. By using UAVs, these sensors will efficiently locate and quantify methane leaks, in real-time, from oil wells and pipelines playing a critical economic and environmental role.
For developing a high-resolution fluorescence imaging system used to observe the progressive changes of cancer cells while interacting with multi-functional nano-particles to demonstrate drug delivery mechanism. The method of simultaneously imaging and treating cancer using nano size particles proves to be advantageous over traditional chemotherapy. However, due to the high surface area to volume ratio of nanoparticles, the quenching effect induced by the surface defect and organic ligands has significantly reduced the optical output efficiency. Nanoparticles with functionalized surface may allow selective imaging and develop targeted therapies, which will lead to a high demand for modifying the nanoparticle’s emission spectrum for multiple cell identification. The pursuit of better targeted drug delivery systems for cancer has remained a key focus area of research. The nanoparticle developed by this project, which has enhanced emission intensity with tunable emission spectrum, can be encapsulated in cancer drugs which can be served as targeted drug deliveries for therapeutic applications and simultaneously allow visual identification of the cancer cells. Its emergence is likely to have a significant impact on the drug-delivery sector and many potential applications in clinical medicine.
For analyzing the polarization pattern of landscapes and of objects that are attractive to tse-tse flies in Africa in order to develop traps which are critical in controlling the spread of disease transmitted by insects. The current research is focusing on the control of tse-tse flies transmitting sleep-sickness in Africa using polarization vision as an attractive cue. Since tse-tse flies detect contrasting objects against the landscape to eventually land on, this research focuses on analyzing the landscape and attractive objects, such as herbivore animals, in terms of their polarization pattern and use this information to develop novel traps and targets exploiting this dimension of light and the polarization vision of flies. Not only will this new approach improve capture rates, but will significantly contribute to the control of the transmission of a major parasitic disease.
Thomas Pertsch from Friedrich Schiller University Jena, Germany
2nd Place – iPad® mini
Dr. Abhijeet Ghosh from Imperial College London, United Kingdom
3rd Place – iPod® nano
Marco Seeland from Technische Universität Ilmenau, Germany
2014 Norman Edmund Inspiration Award
Awarded on November 5, 2014
Norman Edmund Inspiration Award: An additional $5,000 USD in products awarded to the program that best embodies the legacy of Edmund Optics’ founder Norman Edmund. Learn More
Please select your shipping country to view the most accurate inventory information, and to determine the correct Edmund Optics sales office for your order.
or view regional numbers
QUOTE TOOL
enter stock numbers to begin
Copyright 2023, Edmund Optics Inc., 101 East Gloucester Pike, Barrington, NJ 08007-1380 USA
California Consumer Privacy Acts (CCPA): Do Not Sell or Share My Personal Information
California Transparency in Supply Chains Act