Edmund Optics uses cookies to optimize and enhance the features and content on our website. Click “OK” for the full user experience, you can view additional information on the cookies we use by clicking the “Details” button. We do NOT sell your information from marketing cookies, we use it to improve ONLY YOUR experience with Edmund Optics.
Necessary cookies help make a website usable by enabling basic functions like page navigation and access to secure areas of the website. The website cannot function properly without these cookies.
Some of the data collected by this provider is for the purposes of personalization and measuring advertising effectiveness.
rc::aThis cookie is used to distinguish between humans and bots. This is beneficial for the website, in order to make valid reports on the use of their website.
Maximum Storage Duration: PersistentType: HTML Local Storage
rc::cThis cookie is used to distinguish between humans and bots.
Maximum Storage Duration: SessionType: HTML Local Storage
__cf_bm [x2]This cookie is used to distinguish between humans and bots. This is beneficial for the website, in order to make valid reports on the use of their website.
AWSALB [x2]Registers which server-cluster is serving the visitor. This is used in context with load balancing, in order to optimize user experience.
Maximum Storage Duration: 7 daysType: HTTP Cookie
AWSALBCORS [x2]Registers which server-cluster is serving the visitor. This is used in context with load balancing, in order to optimize user experience.
Maximum Storage Duration: SessionType: HTTP Cookie
.AspNetCore.Mvc.CookieTempDataProviderPreserves the visitor's session state across page requests.
Maximum Storage Duration: SessionType: HTTP Cookie
UMB_SESSIONStores domain prefix to determine whether it holds https or http URL properties.
Maximum Storage Duration: SessionType: HTTP Cookie
Preference cookies enable a website to remember information that changes the way the website behaves or looks, like your preferred language or the region that you are in.
@@lc_auth_token:3b0f44ba-5eb5-4bb1-a9e1-2214776a186bIdentifies the visitor across devices and visits, in order to optimize the chat-box function on the website.
Maximum Storage Duration: PersistentType: HTML Local Storage
@@lc_idsIdentifies the visitor across devices and visits, in order to optimize the chat-box function on the website.
Maximum Storage Duration: PersistentType: HTML Local Storage
Statistic cookies help website owners to understand how visitors interact with websites by collecting and reporting information anonymously.
_conv_rThis cookie is used as a referral-cookie that stores the visitor’s profile – the cookie is overwritten when the visitor re-enters the website and new information on the visitor is collected and stored.
Maximum Storage Duration: SessionType: HTTP Cookie
_conv_sThis cookie contains an ID string on the current session. This contains non-personal information on what subpages the visitor enters – this information is used to optimize the visitor's experience.
Maximum Storage Duration: 1 dayType: HTTP Cookie
_conv_vThis cookie is used to identify the frequency of visits and how long the visitor is on the website. The cookie is also used to determine how many and which subpages the visitor visits on a website – this information can be used by the website to optimize the domain and its subpages.
Maximum Storage Duration: 6 monthsType: HTTP Cookie
Some of the data collected by this provider is for the purposes of personalization and measuring advertising effectiveness.
_gaRegisters a unique ID that is used to generate statistical data on how the visitor uses the website.
Maximum Storage Duration: 25 monthsType: HTTP Cookie
_ga_#Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
Maximum Storage Duration: 25 monthsType: HTTP Cookie
_livechat_has_visitedIdentifies the visitor across devices and visits, in order to optimize the chat-box function on the website.
Maximum Storage Duration: PersistentType: HTML Local Storage
Marketing cookies are used to track visitors across websites. The intention is to display ads that are relevant and engaging for the individual user and thereby more valuable for publishers and third party advertisers.
conv_randThis cookie is used by the website’s operator in context with multi-variate testing. This is a tool used to combine or change content on the website. This allows the website to find the best variation/edition of the site.
Maximum Storage Duration: PersistentType: HTML Local Storage
_conv_sptestThis cookie is used by the website’s operator in context with multi-variate testing. This is a tool used to combine or change content on the website. This allows the website to find the best variation/edition of the site.
Maximum Storage Duration: SessionType: HTTP Cookie
Some of the data collected by this provider is for the purposes of personalization and measuring advertising effectiveness.
IDEUsed by Google DoubleClick to register and report the website user's actions after viewing or clicking one of the advertiser's ads with the purpose of measuring the efficacy of an ad and to present targeted ads to the user.
Maximum Storage Duration: 400 daysType: HTTP Cookie
pagead/landing [x2]Collects data on visitor behaviour from multiple websites, in order to present more relevant advertisement - This also allows the website to limit the number of times that they are shown the same advertisement.
Maximum Storage Duration: SessionType: Pixel Tracker
test_cookieUsed to check if the user's browser supports cookies.
Maximum Storage Duration: 1 dayType: HTTP Cookie
_gcl_auUsed by Google AdSense for experimenting with advertisement efficiency across websites using their services.
Maximum Storage Duration: 3 monthsType: HTTP Cookie
NIDRegisters a unique ID that identifies a returning user's device. The ID is used for targeted ads.
Maximum Storage Duration: 6 monthsType: HTTP Cookie
pagead/1p-user-list/#Tracks if the user has shown interest in specific products or events across multiple websites and detects how the user navigates between sites. This is used for measurement of advertisement efforts and facilitates payment of referral-fees between websites.
Maximum Storage Duration: SessionType: Pixel Tracker
_mkto_trkContains data on visitor behaviour and website interaction. This is used in context with the email marketing service Marketo.com, which allows the website to target visitors via email.
Maximum Storage Duration: 2 yearsType: HTTP Cookie
__tld__Used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor's preferences.
Maximum Storage Duration: SessionType: HTTP Cookie
wisepops [x2]Used in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
Maximum Storage Duration: SessionType: HTTP Cookie
wisepops_props [x2]Used in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
Maximum Storage Duration: SessionType: HTTP Cookie
wisepops_session [x2]Used in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
Maximum Storage Duration: SessionType: HTTP Cookie
wisepops_visitor [x2]Used in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
Maximum Storage Duration: SessionType: HTTP Cookie
wisepops_visits [x2]Used in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
Maximum Storage Duration: SessionType: HTTP Cookie
wisepops_session_idUsed in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
Maximum Storage Duration: SessionType: HTML Local Storage
wisepops_session_landing_urlUsed in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
Maximum Storage Duration: SessionType: HTML Local Storage
wisepops_session_referrerUsed in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
Maximum Storage Duration: SessionType: HTML Local Storage
wisepops-pageview_idUsed in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
Maximum Storage Duration: SessionType: HTML Local Storage
wisepops-uses-attentionUsed in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
Maximum Storage Duration: SessionType: HTML Local Storage
List of domains your consent applies to: [#BULK_CONSENT_DOMAINS#]
Cookie declaration last updated on 9/22/24 by Cookiebot
[#IABV2_TITLE#]
[#IABV2_BODY_INTRO#]
[#IABV2_BODY_LEGITIMATE_INTEREST_INTRO#]
[#IABV2_BODY_PREFERENCE_INTRO#]
[#IABV2_BODY_PURPOSES_INTRO#]
[#IABV2_BODY_PURPOSES#]
[#IABV2_BODY_FEATURES_INTRO#]
[#IABV2_BODY_FEATURES#]
[#IABV2_BODY_PARTNERS_INTRO#]
[#IABV2_BODY_PARTNERS#]
Cookies are small text files that can be used by websites to make a user's experience more efficient.
The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies we need your permission.
This site uses different types of cookies. Some cookies are placed by third party services that appear on our pages.
You can at any time change or withdraw your consent from the Cookie Declaration on our website.
Learn more about who we are, how you can contact us and how we process personal data in our Privacy Policy.
Please state your consent ID and date when you contact us regarding your consent.
Most web browsers allow you to view your cookies in the browser preferences, typically within the "Privacy" or "Security" tab. Some browsers allow you to delete specific cookies or even prevent cookies from being created. While disallowing cookies in your browser may provide a higher level of privacy, it is not recommended since many websites require cookies to function properly. Alternatively, you can visit www.aboutcookies.org which provides directions on how to block or delete cookies on all major browsers.
Mr. Stahl, who is a visually impaired biomedical engineer, uses his project to show others how innovation can work to overcome personal and professional challenges. He hopes his device, which improves accessibility, mobility and safety, will help to motivate other talented visually impaired professionals and future scientists to develop their own ideas on how optics based products can improve the lives of the visually impaired. “Many devices have been developed to aid the visually impaired, but none are making a large impact on quality of life because they don’t fit into the modern lifestyle,” said Mr. Stahl. “My own experiences have enabled me to develop something that works, is hands-free and does not require unsightly masks or goggles.” He hopes his project will encourage other professionals with or without visual impairments to do the same.
In developing flow cytometers, using filters, laser mirrors, objectives and various mechanics, for marine research with an optical technology that makes it possible to perform continuous flow cytometric analysis on sea water without the need for clean water, measuring roughly 75,000 km of ocean while on board research vessels and container ships. Roughly 50% of atmospheric CO2 is converted to fixed carbon and oxygen via photosynthesis by ocean algae; however, through warming and acidification the environment in which algae thrives is drastically changing. Currently, Swalwell’s device is designed to capture the numbers and types of algae across ocean basins while measuring microbes in remote places without the need for pre-filtration or clean water, through sampling on board ocean vessels. By developing a compact low power version of this instrument, the measurement platform would be extended to include autonomous underwater vehicles, ocean moorings and research buoys. Ideally, this technology will investigate the water quality in poor areas of the world as well as the impact of industrialization on nearby waterways.
For the development of super resolution 3D imaging technology which uses the high-brightness of rare-earth metals and nanoparticles along with highly nonlinear optical emissions. Dr. Yamanaka’s project uniquely looks deep inside biological samples with the production of customized high contract, low S/N fluorescence imaging system featuring high-end optical filters, cage systems and focus tunable lenses, etc. Using previous super-resolution technology, it was difficult to observe the inside of test samples with a large refractive index because the objects observed were limited to the thickness of one to several cells. It is necessary to have technology that can perform three-dimensional, super-resolution observation of tissue, in order to comprehend the biological behavior toward biological functions and drugs. The outcome of this research will bring a clear understanding of biological activity and will also contribute immensely to regenerative medicine and innovative drug development since we will be able to visualize specific areas and forms within tissue.
For research which focuses on the dynamics of collapsing cavitation bubbles. Hydrodynamic cavitation, which is the growth and collapse of vapor bubbles in depressurized liquid zones, is a major source of erosion and vibration damage in many industrial systems. This damage is associated with liquid jets, emitted shockwaves and extremely high core temperatures reached at the last stage of bubble collapse. During Supponen’s research, she has come across many interesting applications for these bubbles, such as needle-free injections, microfluidic pumps, new printing technologies, transportation of medicine and much more. The main purpose of this research however, is to create and observe these bubbles in a highly controlled environment, using high-energy lasers, high-speed cameras as well as spectrometers.
For non-invasive breast cancer diagnostics using a multimodal imaging system which combines tactile and hyperspectral capabilities to discern malignant and benign tumors. Breast cancer is one of the most common cancers for women, with more than 200,000 new cases each year and 40,000 fatalities from the disease. The common diagnostic path for patients is clinical examination, mammography, ultrasound, which is then followed by an invasive biopsy procedure. Oleksyuk’s proposed system uses tactile images, which quantify mechanical properties of tumors, such as size, depth, elastic modulus and mobility. The spectral images reveal biochemical information about the suspicious region. A custom algorithm fuses the information from both tactile and spectral images to suggest the diagnosis. This device, which features a CMOS sensor and traditional coated 700-999nm bandpass filters, can greatly improve breast cancer diagnostic routine in rural areas and developing countries as well.
For research into the development of a new imaging system for bio samples and nano-size structures imaging beyond the sub-wavelength size. Professor Rho's team aims to develop an optical microscope system having a resolution less than the diffraction limit through a hyperlens made of metamaterial. The resolution of conventional microscopy is restricted by the diffraction limit. Because of the diffraction limit, the spatial information smaller than one-half of the wavelength can’t be propagated to the far field. Hyperlenses have emerged to make it possible to propagate sub-diffraction scale evanescent field to far field as propagating waves. The goal of this project is to develop a new type of far-field super resolution optical microscopy, where the Hyperlens microscopy system is combined with conventional bright field optical microscope, using a high-powered laser, filters, a multi-focus lens, and a high-powered 100x objective lens. With this technology, the team hopes to predict and cure numerous diseases in real time monitoring.
For research on the topic of internal combustion engines, specifically the burn-out phase. During this last phase of the combustion process, not all of the fuel is burned and converted to heat. This leads to a significant reduction of the thermodynamic efficiency of the whole process. As of today, there has been little research conducted on this field, answering the questions of how the burn-out phase can be influenced and optimized. Bakker’s research group intends to investigate the last stages of diesel fuel combustion in a complementary numerical and experimental approach. Leveraging several laser-diagnostic techniques, the composition of the late flame is characterized in both optically-accessible diesel engines as well as in fixed-volume spray combustion vessels. These techniques include 2-photon laser-induced fluorescence and multi-kHz laser-induced incandescence. Ultimately, the outcome of this research will help to increase the energy efficiency of diesel engines and will be used by one of the major oil companies to re-design their diesel fuel.
For the development of an innovative device that uses both infrared structured light and visible green structured light to first sense and highlights hazards for the Visually Impaired (VI). 295 million people worldwide are VI, which poses a significant risk factor for falls and injuries for these. Surveys of VI people indicate that restricted mobility, the ability to commute for study, work, or recreation, is the most urgent problem affecting their quality of life. Stahl, a VI biomedical engineer, uses his own personal experiences to ensure that this wearable device fits into modern lifestyle by being hands-free and is cosmetic by not requiring the use of masks or goggles. Most research and products are designed for those who are totally blind, consequently missing the avenue to greatly improve public safety. This project aims to make a large impact on the quality of life for those who are VI.
For the development of smartphone spectrometer which utilizes a UV LED integrated onto the phone with the use of a collimating lens to act as the source of the fluorimeter. This instrument is run with the use of a customized application which is downloaded onto your phone. The CMOS chip is used as the detector and the homemade nano-imprinted diffraction grating is used as the spectrometer. A lens is then used to collect the light and the scattering, while it is all held in a 3D printed box. Canning and his team plan for this device to be the world’s first dual absorption and fluorescence smartphone spectrometer built with widely available optics and 3D printing. Another interesting aspect of Canning and his team’s research is how this new technology can revolutionize numerous areas of study by merging lab-in-a-phone technology with the Internet of Things (IoT).
For research in Laser Speckle Imaging (LSI) of renal, brain, and retinal blood flow for the purpose of adapting and improving the technology for physiological research; in particular for the study of specific blood flow patterns in the kidney. Postnov and his research team are dedicated to improve the LSI technique for physiological research by studying the influence of various vessel depths and blood velocities in more detail. By using more advanced optical setups, his team was able to study the synchronization of blood flow oscillations in renal microcirculatory systems at an unreached level of detail. As of today, there are only a few companies that offer LSI cameras for medical applications. Based on his research, Postnov is developing a device that could be installed and configured by medical researchers themselves and would only cost a fraction of the commercial LSI systems available today.
Lien Smeesters from Vrije Universiteit Brussel, Belgium
Performance Tracker
Stephen Davitt from Dublin City University (DCU), Ireland
Performance Tracker
Dr. Mario Janda from Comenius University Bratislava, Slovakia
2015 Norman Edmund Inspiration Award
Awarded on November 11th, 2015
Norman Edmund Inspiration Award: An additional $5,000 USD in products awarded to the program that best embodies the legacy of Edmund Optics’ founder Norman Edmund. Learn More
Please select your shipping country to view the most accurate inventory information, and to determine the correct Edmund Optics sales office for your order.
or view regional numbers
QUOTE TOOL
enter stock numbers to begin
Copyright 2023, Edmund Optics Inc., 101 East Gloucester Pike, Barrington, NJ 08007-1380 USA
California Consumer Privacy Acts (CCPA): Do Not Sell or Share My Personal Information
California Transparency in Supply Chains Act